Sequential Recruitment of HAT and SWI/SNF Components to Condensed Chromatin by VP16
نویسندگان
چکیده
Eukaryotic transcription initiation requires the complex dynamics of hundreds of proteins, many of which are found in large multisubunit complexes. Recent experiments have suggested stepwise recruitment of preassembled complexes, including chromatin remodeling, general transcription factor, mediator, and polymerase complexes, in which the actual order of recruitment may vary for different promoters. How do these complexes access target sequences contained within tightly condensed chromatin? While chromatin remodeling activities may facilitate the accessibility of large transcription and polymerase complexes to promoters, it is not known how they themselves are targeted within condensed chromatin. Gene activation in the context of condensed chromatin does occur. A yeast acidic activator, Gal4, can overcome heterochromatin gene silencing in Drosophila, and the addition of LCRs (locus control regions) to transgenes overcomes position effect silencing, even within centromeric chromatin. Here, we directly visualize the recruitment of HAT and SWI/SNF components after tethering the VP16 acidic activation domain within condensed chromatin. A recruitment delay of tens to hundreds of minutes for catalytic HAT subunits and SWI/SNF subunits, relative to other HAT and SWI/SNF components, suggests sequential recruitment/assembly of chromatin remodeling complexes within condensed chromatin.
منابع مشابه
Global Role for Chromatin Remodeling Enzymes in Mitotic Gene Expression
Regulation of eukaryotic gene expression requires ATP-dependent chromatin remodeling enzymes, such as SWI/SNF, and histone acetyltransferases, such as Gcn5p. Here we show that SWI/SNF remodeling controls recruitment of Gcn5p HAT activity to many genes in late mitosis and that these chromatin remodeling enzymes play a role in regulating mitotic exit. In contrast, interphase expression of GAL1, H...
متن کاملHistone Acetyltransferase Complexes Stabilize SWI/SNF Binding to Promoter Nucleosomes
To investigate the function of SWI/SNF in site-specific chromatin remodeling at promoters, we have used a purified system to analyze its distribution, function, and retention following recruitment by a sequence-specific transcription activator. Activator recruitment of SWI/SNF bound the complex to promoter proximal nucleosomes and led to localized nucleosome disruption. However, retention of SW...
متن کاملEfg1-mediated recruitment of NuA4 to promoters is required for hypha-specific Swi/Snf binding and activation in Candida albicans.
Efg1 is essential for hyphal development and virulence in the human pathogenic fungus Candida albicans. How Efg1 regulates gene expression is unknown. Here, we show that Efg1 interacts with components of the nucleosome acetyltransferase of H4 (NuA4) histone acetyltransferase (HAT) complex in both yeast and hyphal cells. Deleting YNG2, a subunit of the NuA4 HAT module, results in a significant d...
متن کاملSignal-dependent incorporation of MyoD-BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex.
Tissue-specific transcriptional activators initiate differentiation towards specialized cell types by inducing chromatin modifications permissive for transcription at target loci, through the recruitment of SWItch/Sucrose NonFermentable (SWI/SNF) chromatin-remodelling complex. However, the molecular mechanism that regulates SWI/SNF nuclear distribution in response to differentiation signals is ...
متن کاملGenetic Interaction Mapping Reveals a Role for the SWI/SNF Nucleosome Remodeler in Spliceosome Activation in Fission Yeast
Although numerous regulatory connections between pre-mRNA splicing and chromatin have been demonstrated, the precise mechanisms by which chromatin factors influence spliceosome assembly and/or catalysis remain unclear. To probe the genetic network of pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, we constructed an epistatic mini-array profile (E-MAP) and discovered many new c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 13 شماره
صفحات -
تاریخ انتشار 2003